Polymer Bulletin

© Springer-Verlag 1982

Supported Catalysts for the Polymerization of 1,3-Butadiene

Kazuo Soga and Kazunori Yamamoto

Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 227, Japan

Summary

Highly dispersed supported catalysts were prepared by supporting various complexes of CoCl₂, CoBr₂ and NiCl₂ on SiO₂, MgO, Al₂O₃ and MgCl₂ in n-heptane, followed by evacuating at room temperature. The catalysts combined with AlEt₂Cl or Al₂Et₃Cl₃ showed very high activities for cis⁻1,4-polymerization of 1,3-butadiene.

Introduction

Many catalysts have been reported for the preparation of polybutadiene high in 1,4-content, eg, the alfin catalysts (MORTON 1980), alkyllithium compounds (KUNTZ et al. 1960) and coordinate catalysts. The catalysts which promote cis addition fall into the following three classes: those containing iodine in some form combined with a trialkylaluminum, those containing cobalt in some form with an alkylaluminum halide, and those containing nickel in some form combined with a trialkylaluminum and a Lewis acid.

Among the iodine systems, the combinations of (a) a trialkylaluminum and TiI₄ (ZELINSKI et al. 1957), and (b) a trialkylaluminum, TiCl₄ and I₂ (FIRESTONE TIRE & RUBBER Co. 1961) are most effective catalysts. In the cobalt family of catalysts, on the other hand, the cobaltous halides (COOPER 1963), oxides, hydroxide, stearate, naphthenate (COOPER 1963), octanoate, sulfate and complexes with pyridine (GIPPIN 1962) and other amines are useful. The preferred salts are those such as cobaltous octanoate, which are soluble in the solvent used. On the other hand, among the nickel systems, the combination of nickel naphtenate, AlEt₃ and BF₃·OEt₂ is most effective (MATSUMOTO et al. 1968).

However, because of considerably low activities of these catalytic systems, the polymer formed contains an appreciable amount of catalyst residues. Therefore, the reduction of catalyst residues in the polymer to a reasonably low level is necessary to ensure stability toward oxidative degradation and uniformity in vulcani-

zation characteristics.

We have recently succeeded in preparing a highly active SiO₂-supported CoCl₂ catalyst for isoprene polymerization (SOGA et al. 1981). In the present study was prepared similar catalysts by supporting various complexes of CoCl₂, CoBr₂ and NiCl₂ on SiO₂, MgO, Al₂O₃ and MgCl₂, and the polymerization of 1,3butadiene was carried out by using them as catalysts.

Experimental

<u>Materials</u> Commercial extra pure grade n-heptane and research grade 1,3-butadiene (from Japan Synthetic Rubber Co.) were purified with the usual procedures. CoCl₂, CoBr₂ and NiCl₂ were obtained from Yoneyama Chemical Reagent Ltd., and were dried at 150 °C for 3 h immediately before use. Research grade SiO₂ (300 m²/g), Al₂O₃ (143 m²/g), MgO (26.4 m²/g) and MgCl₂ (43.3 m²/g) were dried at 300 °C for 3 h. AlEt₃, AlEt₂Cl and Al₂Et₃Cl₃ were commercially obtained and used without further purification. Nitrogen of ultra high purity (from Nihon Sanso Co. Ltd., 99.9995 % purity) was further purified by passing through the molecular sieve 3A colomn cooled at -196 °C.

Preparation of the supported catalysts. The complex of CoCl₂·2C₅H₅N, for example, was prepared from the reaction of CoCl₂ with pyridine at room temperature [CoCl₂·2C₅H₅N (288.03) Calc. C, 41.67 H, 3.42 N, 9.72; Found C, 41.38 H, 3.43 N, 9.57]. The mixture of the measured amounts of each complex

The mixture of the measured amounts of each complex and carrier (More details see Tables I and II) in nheptane was kept standing with vigorous stirring for 1 h at room temperature. The precipitate was separated by filtration and washed adequately with n-heptane, followed by evacuating at room temperature to give the supported catalyst.

Polymerization procedures. In a 100 ml stainless steel reactor equipped with a magnetic stirrer were placed the measured amounts of each supported catalyst, alkylaluminum compound, and n-heptane under nitrogen. The reactor was cooled by liquid nitrogen, degassed i. vac. and then 0.25 mol of 1,3-butadiene was introduced. The polymerization was terminated by adding plenty of a dilute hydrochloric acid solution in methanol containing a small quantity of 2,6-di-tert-butyl-p-cresol. The precipitate was dried i. vac. at room temperature.

Analytical procedures. The amounts of Co and Ni contained in the catalysts were determined by atomic absorption spectrophotometry (Shimadzu AA-610S). The microstructure of polybutadiene was determined by the method of Morero with IR using the KBr pellet tequnique, from 740, 910 and 970 cm⁻¹ bands (MORERO et al. 1959). The number average molecular weight of polybutadiene was measured at 150 °C by gel permiation chromatography (Showa Denko Shodex LC-HT3) using o-dichlorobenzene as solvent.

Results and Discussion

In the previous paper, we prepared the SiO₂-, Al₂O₃-, MgO- and MgCl₂-supported CoCl₂ catalysts from the complex of CoCl₂·2C₅H₅N, and conducted isoprene polymerization using them as catalysts combined with AlEt₂Cl. Among these catalysts the SiO₂-supported CoCl₂ catalyst showed an extremely high activity for the polymerization (SOGA et al. 1981).

Therefore, similar catalysts were prepared by supporting several complexes of CoCl₂ and CoBr₂ on SiO₂. Polymerizations of 1,3-butadiene were conducted at 65 °C for 15 min using them as catalysts combined with AlEt₂Cl. The polymerization was also conducted under similar conditions with the use of carrier-free CoCl₂ or CoCl₂·2C₅H₅N for reference. The results obtained are summarized in Table I together with some analytical data.

These SiO₂-supported CoCl₂ catalysts showed much higher activities as compared with the carrier-free catalysts (Runs no. 1 and 2). As reported earlier, the activity of the SiO₂-supported CoCl₂ catalysts for isoprene polymerization significantly decreased with an increase in the molar ratio of CoCl₂ to SiO₂. This phenomenon was attributed to the lack of efficient dispersion of CoCl₂ on the surface of SiO₂. In the polymerization of 1,3-butadiene in this study, a similar phenomenon was observed. Thus, the catalyst used in Run no. 6 showed a lower activity in comparison with the one used in Run no. 7. The use of Al₂Et₂Cl₃ in place of AlEt₂Cl also gave a very high activity (Run no. 5), while AlEt₂ didn't (Run no. 4).

AlEt² didn't (Run no. 4). ³Then, one of the supported catalysts (used in Runs no. 3-5) was treated with an AlEt₂Cl solution in nheptane (0.3 mmol AlEt₂Cl in 10 mI n-heptane) at 65 °C for 15 min, followed by washing with n-heptane and the solid part was subjected to the elemental analysis. From the result obtained it was confirmed that most of pyridine was removed from the complex of CoCl₂·2C₇H₅N by the reaction with AlEt₂Cl as found in the TiCl₃·3C₅H₅N on MgCl₂-AlEt₂Cl system (SOGA et al. 1979).

²Howevér, the microstructure of polybutadiene varied to some extent with each run, the precise reason of which is not clear at present.

Similar catalysts were then prepared by supporting NiCl₂·2C₅H₅N on SiO₂, Al₂O₃, MgO and MgCl₂ and the polymerization of 1,3-butadiene was conducted using them as catalysts combined with AlEt₂Cl. The results obtained are summarized in Table II.² The activity, which was generally much poorer than that of the CoX₂

\sim
catalysts ^a
T.
-Aleto
СоХ
the
оvег
polymerization
: of 1,3-butadiene
Results
. •
н
Table

				1		
Run 1	No. Catalytic System	Co Supported [mg-Co/g-carrier]	Activity [ka/a-Co.h]	Microstru	cture of the	polymer
			[17.00 & /Av.]	cis 1,4-	trans 1,4-	1,2-
Ч	coc1 ₂ ·	I	0.1	87.9	7.1	5.0
7	coc1 ₂ • 2c ₅ H ₅ N	I	38	92.9	9 . 6	3.2
ю	cocl ₂ ·2c ₅ H ₅ N-SiO ₂ ^{b)}	2.32	470	98.0	1.7	0.3
4	cocl ₂ ·2C ₅ H ₅ N-SiO ₂ ^{c)}	2.32	Ч	I	I	I
ъ	cocl ₂ ·2C ₅ H ₅ N-SiO ₂ ^{d)}	2.32	460	93.9	3.7	2.4
9	coc1 ₂ ^{2P} (C ₆ H ₅) <u>3</u> SiO ₂	6.28	190	92.7	2.1	5.2
2	coc1 ₂ ² P(C ₆ H ₅) ₃ SiO ₂	0.56	800	95.7	3.4	0.9
8	$COBr_{2}^{2P}(C_{6H_{5}}) = 3SiO_{2}$	1.01	650	94.3	2.2	3.5
6	$coBr_2^{2P}(c_{2H_5}, \overline{3}Sio_2)$	1.21	400	95.7	J.4	2.9
10	COBr ₂ ^{2P} (O) 3-sio2	0.85	210	92.7	3.1	4.2
11	COBr ₂ 2P (OCH3)-SiO2	0.83	540	94.7	2.1	3.2
a) P(olymerization was condu	icted at 65 °C for 15	a min by using	g ca. 20 mg	of catalyst,	10 ml

of n-heptane, ca. 0.3 mmol of AlEt_Cl and 0.25 mol of 1,3-butadiene. b) Mn : 42,000, Tg : -115 °C, Tm : -14.5 °C c) AlEt₃ was used in place of AlEt₂Cl. d) $Al_2Et_3Cl_3$ was used in place of AlEt_2Cl.

Tabl	e II. Results of 1,3-	butadiene polymerizat	ion over the h	NiCl2-AlEt2	cl catalysts ^a	Ċ
Run	No. Catalytic System	Ni Supported [mc-Ni/c-carrier]	Activity [ka/a-Ni•h]	Microstru	icture of the	polymer
		[+)++++>> A /++ A []		cis 1,4-	trans 1,4-	1,2-
Ч	Nicl2	I	0.4	94.0	4.6	l.4
7	NiCl ₂ •2C ₅ H ₅ N	I	3.5	92.3	5.3	2.4
с	NiCl2 2C5H5N-SiO2	1.66	06	93.4	4.5	2.1
4	Nicl ₂ •2c ₅ H ₅ N-Al ₂ 0 ₃	0.66	44	6.98	7.1	3.0
ഹ	NiCl ₂ ·2C ₅ H ₅ N-MgO	1.37	41	92.0	5.2	2.8
9	NiCl2.2C5H5N-MGCl2	I.79	21	93.0	4.8	2.2
7	NiCl ₂ ·2C ₅ H ₅ N-SiO ₂ ^{b)}	1.66	trace	ł	ı	ł
8	NiCl ₂ ·2C ₅ H ₅ N-SiO ₂ ^{c)}	1.66	trace	I	I	I
6	NiCl ₂ ·2C ₅ H ₅ N-SiO ₂ ^{d)}	1.66	190	84.2	11.9	3 . 9
10	Nicl ₂ n(C ₂ H ₅ OH)SiO ₂	4.10	49	93.3	4.7	2.0
a) P	olymerization was cond	ucted at 65 °C for 15	min by using	ca. 20 mg	of each catal	yst,

-

10 ml of n-heptane, ca. 0.3 mmol of AlEt₂Cl and 0.25 mol of 1,3-butadiene. AlEt was used in place of AlEt₂Cl. Al(i^2 Bu)₃ was used in place of AlEt₂Cl. Al₂Et₃Cl₃ was used in place of AlEt₂Cl.

q û û

267

catalysts, increased in the following order: MgCl₂ < MgO < Al₂O₃ < SiO₂. MgCl₂, which extremely accelerates the activity of α -olefins² (SOGA et al. 1981), didn't show such an excellent property for the polymerization of 1,3-butadiene.

The SiO₂-supported NiCl₂ catalyst was treated with AlEt₂Cl according to the same procedure as described before, and it was found that a small amount of pyridine was left in the catalyst. This seems to be attributed to the fact that NiCl₂ is a little stronger than CoCl₂ in acidity (DOWDEN, 1968). However, it is obscure whether such a poor activity of these catalysts might owe to the pyridine left in the catalysts or not.

From this point of view, another type of a SiO₂supported NiCl₂ catalyst was prepared by adding SiO₂² into a NiCl₂ solution in ethanol, followed by evacuating at room temperature. This catalyst was found to be free from ethanol by the elemental analysis.

It may be considered that ethanol, which seems very weak in basicity, could be removed only by evacuating at room temperature. However, the catalyst gave rather lower activity as compared with the one prepared from NiCl₂·2C₅H₅N (c.f. Runs no. 3 and 10). We have already reported in the TiCl₂·3C₅H₅N on MgCl₂ catalytic system that catalyst evacuating results in the diffusion of TiCl₃ into the grain bulk as well as the agglomeration of TiCl₃ (SOGA et al. 1979). Such a phenomenon might also occur in the present system. Therefore, it is still obscure whether the Co-species are much more reactive than the Ni-species or not.

Anyhow, we succeeded in preparing extremely highly active SiO₂-supported CoX₂ catalysts for cis-1,4-poly-merization² of 1,3-butadiene.

A more detailed study is now being carried out and the precise results will be reported in another paper.

References

MORTON, A. A. : Ind. Eng. Chem. 42, 1488 (1950) KUNTZ, I., GERBER, A. : J. Polym. Sci. 42, 299 (1960) ZELINSKI, R. P., SMITH, D. R. (to Phillips Petroleum Co.) : Berg. Pat. 551851 (1957) FIRESTONE TIRE & RUBBER Co. : Ger. Pat. 1112834 (1961) COOPER, W. : Rubber Plastics Age 40, 44 (1963) COOPER, W. : Makromol. Chem. <u>67</u>, <u>729</u> (1963) GIPPIN, M. : Rubber Chem. Tech. <u>35</u>, 1066 (1962) MATSUMOTO, T., OHNISHI, A. : Kogyo Kagaku Zasshi (J. Chem. Soc. Japan, Ind. Chem. Sec.) 71, 2059 (1968) SOGA, K., YAMAMOTO, K. : Polym. Bull. 5, 1 (1981) MORERO, D., SANTAMBROGIO, A., PORRI, L., CLAMPELLI, F. : Chim. e Ind. 41, 758 (1959) SOGA, K., TERANO, M., IKEDA, S. : Polym. Bull. 1, 849 (1979)SOGA, K., TERANO, M. : Polym. Bull. 4, 39 (1981) DOWDEN, D. A. : Proc. IV Inter. Congr. on Catalysis, Moscow 1968, p. 201 Received October 28, accepted after revision December 9, 1981 S